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Progress for the Third Reporting Period

During the third reporting period our efforts were focused on a reformulation of the

optimal control problem involving active state-variable inequality constraints. In the
reformulated problem the optimization is carded out not with respect to all controllers, but

only with respect to asymptotic controllers leading to the state constraint boundary.

Intimately connected with the traditional formulation is the fact that when the reduced
solution for such problems lies on a state constraint boundary, the corresponding boundary
layer transitions are of finite time in the stretched time scale. Thus, it has been impossible
so far to apply the classical asymptotic boundary layer theory to such problems 1.
Moreover, the traditional formulation leads to optimal controllers that are one-sided, that is,
they break down when a disturbance throws the system on the prohibited side of the state
constraint boundary. -

In our second reporting period we tried to remedy these problems by using two
successive transformations 2. The first (Valentine's) transformation converts the state-

variable inequality constraint into an equality constraint but at the expense of introducing a
singular arc along the reduced solution. The second (Goh's) transformation then converts

to a regular optimization problem. Although this procedure appeared to supply a
mechanism for the construction of linearized boundary layer corrections (in Goh's

variables), the resulting solutions (in Valentine's variables) consisted of impulse like
controls and step-function-like fast states in the (linearized) boundary layer. This meant that
the resulting (linearized) boundary layers (in Valentine's variables) supplied no additional
information over that supplied by the reduced solution. Closer examination of the whole
procedure in a general setting revealed that this behavior was rather not surprising and
intimately connected with the singular arc. Specifically, any attempt to obtain a linearized
boundary layer correction about a singular arc results in a (trivial) zero-time boundary layer

which happens to be just a step function.

The difficulties encountered during the second reporting period led us in the first half

of the third reporting period (see Appendix A) to give up on Goh's transformation and try
to invent an alternative near-optimal procedure for treating such problems. The idea that we
came up with was to use a Valentine-like transformation to transform to new variables,
such that, in the transformed system no trajectory violated the constraint, and, the reduced
solution that rides the state constraint boundary corresponded to a singular arc at infinity.
Linearized boundary layer expansions about such a singular arc were, just as expected,
trivial step functions. By expanding however about a finite arc (that was nonsingular) we
were able to obtain a nonlinear, two-sided feedback control law that tracked the reduced

solution asymptotically. This corresponded to allowing -in the boundary layer only- two-
sided perturbations of a prescribed size beyond the state constraint boundary. Our
procedure was nearly-optimal in the same sense as feedback linearization, that is, because
we were tracking a nearly-optimal reduced solution that usually tends to dominate the
performance index if the final time is large compared to the characteristic times of the
boundary layers. However, our procedure did not imply any optimality in the boundary
layer and did not result in any uniformly valid approximation of the exact solution, because
as the finite arc approached the singular arc at infinity the boundary layer degenerated again
into a step function. For more details on this effort the reader is referred to Appendix A.
Although the effort proved unsatisfactory, it made us look into the problem from a new

perspective, which eventually, as we explain in the remainder of this report, did lead to
some fruitful results.



Our futile attempts during the fast two reporting periods and the first half of the third

reporting period to combine the classical asymptotic boundary layer theory with the
traditional formulation of optimal control problems involving active state-variable inequality
constraints led us in the second half of the third reporting period to a complete
reconsideration of the main issues. Above all was the realization that the way in which

these problems were formulated resulted in finite-time, one-sided feedback control laws
that were useless from a practical point of view. We suspected that the reason we were not

getting the right answers was that we were not asking the right questions. We gradually
realized that what we really had to insist upon and retain was the asymptoticity and the two-
sidedness of our feedback control laws, not their optimality, defined according to these
traditional standards. After all, these two features are both necessary (but not sufficient) to
make a control law attractive from a practical point of view. Note that such a conflict never
arises when a problem does not involve any active state-variable inequality constraints. In
such a case the classical asymptotic boundary layer theory leads to feedback control laws
that are both asymptotic and two-sided as desired. Thus, the idea that dominated the
second half of the third reporting period was that, if we were to retain the asymptoticity and
the two-sidedness of our control laws when solving optimal control problems involving
active state-variable inequality constraints, then, we somehow had to build these two

features explicitly into the problem. This meant that we would have to reformulate the
boundary layer problem so that the optimization is carded over all controllers that lead
asymptotically to the state constraint boundary (corresponding to the reduced solution) and
do not break down when a perturbation throws the system on the prohibited side of the

boundary.

To accomplish the above task one will first have to isolate the asymptotic, two-sided
controllers from the rest. It is in this specific area that we have made significant progress

during our third reporting period 3. Although the details are given in our draft paper

prepared for the 1993 AIAA Guidance and Control Conference (see Appendix B), we will
hint at our ideas here by considering the dynamical system:

dXd_.t..= f(x, y, u) X(to) = Xo (1)

dy

d"_- = g(x, y, u) Y(to) = Yo (2)

where x, f are vectors of the same dimension, and y, g and u are scalars. We would like to

describe the set Cof all piecewise continuous (in time) control laws u(x(t),y(t),t) that track a

given hypersurface in the state space of the above system, given by the scalar equation:

S(x, y) = 0 (3)

that is, if u=u(x,y,t) is a specific control law belonging to C, then the system (1), (2),

driven by u(x,y,t) for t > to (and assuming that S(xo,Y0) is not zero) will eventually reach

the hypersurface given in (3) and stay on it thereafter. A control law can drive the system

onto the hypersurface (3) either in finite time or asymptotically. Accordingly, the set C is

the union of two disjoint sets 7" and A. The set 7" contains all control laws that track

hypersurface (3) in a finite time. The set ._ contains all control laws that track hypersurface

(3) asymptotically. We would like to give a complete description of the sets 7.and A.

Let us denote by Z the set of all piecewise differentiable, scalar functions of the real

variable ct, defined and invertible for all cc in [0,1], and satisfying the boundary conditions:



z(0) = 0 ; z(1) = - S(x o, Yo ) (4)

We assume that the range of S is contained in the range of z for all z in Z. We consider ot

as a time variable and make the transformation from y to ot:

z(ot) + S(x, y) = 0 (5)

Differentiating (5) with respect to time and using (1) and (2) results in:

dz dot

dot dt
OS f'x, OS

+--_- t. y, u) +-_g(x, y,u)=O
(6)

We now let dtx/dt play the role of a new control, 13,by defining:

dot
dt - 13 (7)

then, (6) becomes:

dz OS f'x,dot 13+ _- _' y, u) + g(x, y, u) = 0 (8)

We will assume for the sake of simplicity that the hypersurface (3) is first order in u, that
is, the total time derivative of S(x,y) is explicitly dependent on u. We also assume that (5)
is invertible in y and that (8) is inverfble in u, resulting in the two equations:

y = h(x, z) (9)

dz

u = k(x, z, _ 13) (10)

for y and u respectively. System (1) and (2) has now been transformed through (5)-(10) to
the equivalent system:

dx dz
-f(x, h(x, z(ot)), k(x, z(ot), _--ff 13)) x(t0) = x o (11)dt

dot

dt - 13 ot(t o) = 1 (12)

If we now want to drive our original system (1), (2) onto the hypersurface (3) in a
specified finite time tf, then all we have to do is use the control law for the transformed

system

1

13= tf - t o for t o < t < tf (13)

13= 0 for tf < t (14)

that leads to the time variation for ot:

tf - t

ot - tf - t o for to < t < tf (15)



o_= 0 for tf < t (16)

Thus, ot is driven from 1 to 0, in to < t < tf and stays at zero for tf < t. Accordingly,

due to the boundary conditions (4) on the function z(o0, our original system (1), (2), is

driven from its initial state at t=to onto the hypersurface (3) in to < t < tf and stays on the

hypersurface for tf < t. The feedback controller u(x,y,t) that will perform this task for

system (1), (2) can be found from (10): 13is given by (13), (14), z is equal to -S(x,y) from

(5), and since z(ot) is invertible on [0,1], dz/dot can be expressed as a function of z and

therefore of-S(x,y).

Similarly, if we want to drive our original system (1), (2) onto the hypersurface (3)
asymptotically, then we can use the control law for the wansformed system

[3 = - ot (17)

that leads to the exponential time variation for o_:

or= e-t (18)

Now, ot is driven from 1 to 0 exponentially. Again, due to the boundary conditions (4)

on the function z(o0, our original system (1), (2), is driven asymptotically from its initial

state at t=t o onto the hypersurface (3). The feedback controller u(x,y,t) that will perform

this task for system (1), (2) can be found from (10): 13is given by (31), -S(x,y) is equal to

z from (5), and since z(o0 is invertible on [0,1], dz/dot can be expressed as a function of z

and therefore of-S(x,y).

We can thus claim that fixing the control 13as in (17), or as in (13), (14) establishes a

correspondence between functions z(o0 in 2, and controllers u(x,y,t) in .,q or 5r that bring

system (1), (2) onto the hypersurface (3) asymptotically or in finite time respectively. As

proven in the draft paper 3 for example (see Appendix B), once 13is fixed as in (17), for

every z(o0 in Z, there corresponds a controller u(x,y,t) in A, and, more importantly, for

every controller u(x,y,t) in A, there corresponds a function z(o0 in 7_, The correspondence

therefore established between A and 2, through the selection of 13as in (17) is onto. Similar

facts hold for the sets 2,and yonce 13is fixed as in (13), (14).

These results suggest that in an optimization problem in which the asymptotic tracking
of a hypersurface is desired (like for example in a boundary layer problem that corresponds
to an optimal control problem involving an active state-variable inequality constrain0 we

can forget about the "real" controllers u(x,y,t), fix the control 13as in (17), and optimize

over all functions z(o0 in 7_.,This amounts to carrying out the optimization for the original

problem only over all (asymptotic) controllers in A. The resulting off-line optimization

problem is guaranteed to have an infimum if the original problem does have a minimum 3.

An example that we supply in the draft paper 3 (see Appendix B) suggests that it may be
possible for this off-line optimization problem not to achieve its infimum, that is, the
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infimum may correspondto a finite-time controller (that belongsto F but not A). The

question that arises naturally in such a case is how to find an asymptotic controller that
somehow approximates this infimum. Although there are no general answers yet, in our

draft paper 3 we were able to show that by imposing an additional isoperimetric constraint
on the reformulated problem one can, at least for this particular example, select an
asymptotic controller that approximates this infimum.

Conclusions and Future Research

The class of all piecewise continuous (in time) controllers that track a given
hypersurface in the state space of a dynamical system can be split into two disjoint classes.
The first class contains all controllers that track the hypersurface in finite time. The second
class contains all controllers that track the hypersurface asymptotically. A transformation
technique can be used to give a complete description of both classes. This splitting of the
two classes can be used to reformulate optimal control problems involving active state-
variable inequality consu'aints. The optimization in the reformulated problem is carried out
over the class of asymptotic controllers only and not over the class of all controllers. If a
minimum over all controllers exist, then the reformulated problem is guaranteed to have an
infimum. An example suggests that the reformulated problem does not achieve its infimum,
that is, the infimum corresponds to a finite-time controller. By imposing an additional
isoperimetric constraint on the reformulated problem one can, at least for this particular
example, select an asymptotic controller that approximates this infimum.

Our primary goal for the immediate future is to generalize the results obtained for the
particular example of the draft paper 3 to a general boundary layer system, corresponding to

an optimal control problem involving active state-variable inequality conslraints. We plan to
examine in this general setting whether and when the off-line optimization problem
corresponding to such a system achieves its infimum, that is, whether and when can one
find an asymptotic controller that results in this infimum. For the cases in which this

infimum is not achievable with an asymptotic controller, we would like to find out under
what additional conditions can one approximate it (with an asymptotic controller). The
isoperimelyic constraint that we used in the example in our draft paper should provide us
with some insight. Furthermore, we plan to extend our theory to the cases in which the
hypersurface described by S(x,y) is n-th order in u, that is, one needs to differentiate
S(x,y) n times with respect to time to get explicit dependence in u. Finally, we plan to

examine whether the correspondence established in our draft paper between functions z(ot)

in Z and controllers u(x,y,t) in A or Fis one-to-one. Since we showed that it is onto, if it

turns out to be also one-to-one, this would mean that it is a bijection. Such a result would

be important because it would imply a complete equivalence between the set Z and the sets

AorF.
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Appendix A

Progress for the First Half of the Third Reporting Period

In this Appendix we supply a more detailed account of the work conducted during the
first half of the third reporting period, namely, between 7/5/92 and 10/1/92. Our main
objective during this effort was to somehow combine the classical asymptotic boundary
layer theory with optimal control problems involving active state-variable inequality
constraints. We supply the work as an Appendix because it proved unsatisfactory.
However, it made us look into the problem from a new perspective, which eventually, as
we explain in the main part of our report, did lead to some fruitful results and a conference
paper. The reference numbers in this Appendix refer to the reference list on page 6.

During the first half of the third reporting period our efforts were focused upon
developing a method for applying the asymptotic boundary layer theory to optimal control
problems involving active state variable inequality constraints. The main theoretical issue is
that when the reduced solution for such problems lies on a state constraint boundary, the
corresponding boundary layer transitions are of finite time in the stretched time scale. Thus,
it has been impossible so far to apply the traditional asymptotic boundary layer theory to
such problems. In our second reporting period we tried to remedy this problem by using
two successive transformations 2. The first (Valentine's) transformation converts the state-

variable inequality constraint into an equality constraint but at the expense of introducing a
singular arc along the reduced solution. The second (Goh's) transformation then converts
to a regular optimization problem. Although this procedure appeared to supply a
mechanism for the construction of linearized boundary layer corrections (in Goh's
variables), the resulting solutions (in Valentine's variables) consisted of impulse like
controls and step-function-like fast states in the (linearized) boundary layer. This meant that
the resulting (linearized) boundary layers (in Valentine's variables) supplied no additional
information over that supplied by the reduced solution. Closer examination of the whole
procedure in a general setting reveals that this behavior is rather not surprising and
intimately connected with the singular arc. Specifically, any attempt to obtain a linearized
boundary layer correction about a singular arc results in a (trivial) zero-time boundary layer
which is nothing else but a step function.

The above difficulties encountered during the second reporting period led us to keep
Goh's transformation aside and try to invent an alternative near-optimal procedure for
treating such problems. The idea that we came up with and that we will try to expand upon

in this report is the following:

Suppose that in an optimal control problem we are imposed with a state-variable
inequality constraint of the form:

S (x, y) -< 0 (1)

where x and y are the slow and fast state variables respectively. Then, we can eliminate the
constraint by using the transformation

e Qt+ S(x, y) = 0 (2)

to transform from the (x,y) plane to the (x,a) plane. Any trajectory in the (x,a) plane is a
trajectory that does not violate (1). Moreover, in the (x,a) plane a plays the role of the new
slow state variable. A reduced solution in the (x,y) plane that rides the constraint (1)
corresponds to a singular arc at infinity in the (x,et) plane. Linearized boundary layer
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expansionsabout such a singular arc are just (trivial) step functions. However, if in the
(x,ot) plane we instead track an arc a=ao, where ao is afinite negative number, then, due

to the properties of the wansformation (2), even for moderate magnitudes of ao, in the (x,y)

plane we are sill practically tracking the reduced solution S(x,y)=0 (that is, we are nearly
optimal) and more importantly, since the arc a=o_ is non-singular, it affords a non-trivial,

asymptotic, linearized boundary layer expansion about it. For example, if in the (x,a) plane
we track the arc a=ao=-3, then in the (x,y) plane we are tracking the arc S(x,y)=-0.05,

which is pretty close to the optimal arc S(x,y)--0.

In order to demonstrate the applicability of the above idea we will now try to apply it to
Example 1 of Ref. 1. In this example we are given the singularly perturbed system:

dx_ u2
dt - y - (3)

dy

e _ = u (4)

and the state-variable inequality constraint

S = y - 1 < 0 (5)

The initial conditions are x(0)=y(0)--0. The final value of x, x(tf)=xf is specified and

strictly positive, and the objective is to minimize the time required for x to reach this
specified final value. Transformation (2) for the above system reads:

e a + y - 1 = 0 (6)

Differentiating (6) with respect to time, and using (4) we obtain:

eaal + u = 0 (7)

where the new control variable oq is defined as:

da
E-_- =(_1

The resulting equivalent unconstrained system is:

dx = 1-e °t-e2aa 2
dt 1

(8)

(9)

da (10)
8--_- =Or 1

with initial conditions x(0)=0, a(0)--0, and final condition x(tf)=xf>0. The Hamiltonian for

system (9), (10) is:

H kx(1 e a ^2a_2_ +1=0= -- -- c t_l) + _,CtO_ 1
(11)

resulting in the optimality condition:

OH

Ooq
--- 2Z, xe2aal + ks =0 (12)



andtheadjointequations:

k x = con stant (13)

d_tx _ _.xea( 1 + 2eaot_ ) (14)e dt

Using e=0 we find that there is only one possible reduced solution for the above system,
given by:

0 _0 0al =o 0, L_x=0, =-'0, kx=-l, x°(t)=t, yO=l, u °=0 (15)

Thus, as expected, in the the (x,a) plane the reduced solution corresponds to an arc at
infinity. This arc is singular because the coefficient of eq vanishes along it in the optimality
condition (12).

At this point we are ready to make our major approximation. Instead of using (15)
itself, we will approximate the singular arc at infinity by the nonsingular arc:

oto = °to (16)

where % is a strictly negative finite number the value of which is left to our selection.

Note that as ao tends to --0 our reduced solution in the (x,y) plane rides the state constraint.

Note also that even for moderate magnitudes of ao our reduced solution in the (x,y) plane

will practically ride the state constraint. For example if we select 00=-3 then from (6) yO is

approximately 0.95, which is very close to 1. The important point here is of course the fact
that the arc given by (16) is a non-singular arc, which implies the possibility of an
asymptotic boundary layer expansion about it. In summary, if we approximate the singular

arc at infinity by the non-singular arc given by (16), we can easily verify that the exact
reduced solution given in (15) will have to be approximated as:

0 0 1

otl°=0'_cx =0, ot°=oto, _x- % 'x°(t)=(1-e%)t' Y°=Y0' u°=0 (17)
e -1

where we define Yo as:

Yo = 1 - e % (18)

We are now ready to examine the possibility of an asymptotic boundary layer

expansion about the approximate reduced solution given in (17). Stretching the time scale
near t=0 by:

t
= - (19)

e

the boundary layer equations for t near 0 can be written as:

dot

d'_ - otl (20)
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d1 keaO_ 1

The Hamiltonian evaluated in the boundary layer is given as:

HBL=(1] (1-ea-e2aa_)+jkaO_le%- 1

(21)

+ 1 = 0 (22)

The boundary layer system can therefore be stated in the equivalent form of an optimization

problem:

minimize: j_. l'_f( 1 _(1-e a- e2aa_) d'c 'gffree (23)
o t,e % -1 9-

do_

subject to: dx - al a(O)--O (24)

Note that our approximate reduced solution given in (17) serves as an approximate
equilibrium solution of the boundary layer system (20), (21). In order to linearize the
boundary layer system about the reduced solution given in (17) we def'me:

5a = a- a ° =a- a o (25)

_1 = 0_1 -- (I10 = _1 (26)

Then, the linearized boundary layer system can be stated in the equivalent form of the
optimization problem:

1 xf BL 2 BL BL 2
HalalSOCl)d'c If free (27)minimize: J=2- _o (HaaSa +2H_ 5aSa I +

subject to: d(Sa)
d'c -8al 8a(0)=-a o (28)

where the second partials of H BL with respect to a and a 1, evaluated along the approximate

reduced solution (17) are found to be:

BL o2HBL e %
H_ -

3a2 1 - e%

BL O 2HB L

H°_, = o_a _al -0

(29)

(30)

H BL = 02HB____L
2

atal _a 1

The adjoint equation associated with (28) is:

d(_Za)

dx

2 e 2a o
= -- (31)

1 - e %

BL BL
- - Haa_a - I-I_a I gal (32)

10



where8),._isdefinedas:

_i_,cx= _ - _o = ;ka (33)

The optimal control &_l is determined from the optimality condition:

BL BL

H_lSot + Halch 5oq + _ikcx = 0 (34)

Solving (34) for &t 1, substituting into (28) and (32), and taking into account (29) through
(31) results in the Hamiltonian system:

d(fi_) (e._a_° - .1)8_.a (35)- _, 2e 2%

d'_ _.e % - 1)
(36)

The eigenvalues associated with this system are:

% %

e 2 e 2

sl- "V_ s2 = - "V_ (37)

Note that as % tends to minus infinity the eigenvalues in (37) tend to plus or minus

infinity, reasserting the fact that at this limit the boundary layer degenerates to a step
function.

The solution of system (35), (36) can be found using standard methods. First, in order

to cancel the instability arising from s 1 the initial value of 8L a will have to be selected as:

3%

2a0e 2
8L a (0) = (3 8)

"V/2- (e a°- 1)

Then, the solution of (35), (36) can be shown to be:

{ %1_(_) - - %e×p z e-2"
- _"

(39)

8_._ (x) =

3or 0

- f2%e 2
%

_e 2
(40)

11



The optimal control _{X 1 is determined from the optimality condition (34), using (29)
through (31), (39), and (40):

%

_l(Z) - °_° e-"_'- {-_/2 exp %l
.--- '_ e- "2-. (41)

v'TJ

Comparing (41) with (39), _q can also be written in the form of a linear feedback control
law:

Ix 0

e---_--

&_l(x) =_ _ &_ (_)
(42)

Using now (25), (26), and (33), and replacing x by t/e, the composite solution in the (x,a)
plane, resulting from the linearized asymptotic boundary layer expansion (39) through (42)
can be found to be:

t e--T
= 1- exp (43)

(It 0
m--

0_o e 2
a 1(t) - _ exp

'VZ
(44)

3%

= exp !e--r
E-C -J

(45)

The linear feedback control law found in (42) now becomes:

%

e 2

_l(t) = _ ((X(t) - (ZO)
(46)

Note that as the boundary layer time t/e tends to infinity, or, _1 and Xa approach their

(approximate) reduced solution values given in (17). Note also that as a o tends to _oo, the

solutions given in (43) through (45) degenerate into step functions.

In order to transform the above solution to the (x,y) plane we use (6), (7), and (18).
The result for y(t) is:

12



t

y(t)= 1-(1-yo) 1- exp{- _4/2(1-y°)} (47)

The linear feedback control law in (46) is now transformed to the nonlinear feedback
control law:

1 -y(t) in(I- y(t) (48)

Note that since Y0 is less than 1, the nonlinear feedback control law in (48) is able to handle

two-sided perturbations about Yo, as long as these perturbations remain small and do not

exceed 1. To complete the solution in the (x,y) plane we will also have to have the solution
for x(t). But this is just the reduced solution found in (17):

x(t) = x°(t) = (1 - e ct° ) t (49)

Our approximate minimum final time is the time at which x assumes its final value xf,
which from (49) is:

Xf
tf - (50)

(1 - e _ )

Note that as cto tends to -**, tf tends to its exact valuO xf, which comes as a confirmation of
the near-optimality of our procedure.

In order to assess further this near-optimality we will now try to find the solution to
the nonlinear boundary layer equations ((23), (24)) in the (x,a) plane, and then compare it
with the exact solution given in reference 2 as % tends to -**.

The optimality condition for the nonlinear case is obtained by differentiating the
boundary layer Hamiltonian given in (22) with respect to _q:

_H BL 2 e2Ct (_1

0_1 ect° - 1
+ _,a = 0 (51)

Substituting for _ from (51) into (22) we obtain:

(X2_ e ct _etXO
e2 a (52)

Substituting for a 1 from (52) into (24) results in a nonlinear differential equation for et:

(dot'_ 2 (x(O)=O (53)
e a _ e _

d't; ) - e 2a

Using (6), and (18) we can show that (53) is equivalent to:

13



dy)2
"_-) = Yo - Y y(O)=O (54)

Note that a solution does not exist, unless y is less than Y0. Assuming that this is the case,
and taking into account that in order for y to reach 1 dy/dx near t=0 will have to be positive,
we can show that the unique solution of (54) is:

,C2
Y(X) =- -4- + x'_0 (55)

From reference 1 we can easily verify that the exact nonlinear boundary layer solution is:

,C2

y('0 = - -4- + 'c (56)

Comparing (55) with (56), and taking into account (18), we see that as a o tends to -,o, Yo

tends to 1, and our solution (55) tends to the exact solution (56) as expected.

In order to derive a nonlinear feedback control law we now use (4), (19), and (54)
which results in:

1/2

u('c) = (yo- y('c) ) (57)

From reference 1 the nonlinear feedback control law that corresponds to the exact nonlinear
boundary layer solution is:

1/2
u(x) =(1 - y(x)) (58/

A comparison of (57) with (58) shows that as Y0 tends to 1 the two control laws become

identical as expected.

Comments

From a practical point of view the most important product of a procedure such as the
above would be the two feedback control laws found in (48), and (57). Although both laws
are nonlinear, there are important differences between the two. Specifically, the law
supplied in (48) was found by using the linearized boundary layer system in the (x,ct)
plane. The law supplied by (57) on the other hand was found by using the full nonlinear
boundary layer system in the (x,a) plane. In order to keep this distinction clear we will
from now on use the notations LBL and NBL to refer to the linearized and nonlinear

boundary layer systems respectively. Thus, (48) will be referred to as the LBL law and
(57) will be referred to as the NBL law. The striking difference between the two laws is

that the LBL law is asymptotic, while the NBL law is finite time. This can be concluded by
examining (47) and (55), representing the solutions for y that the two laws give rise to
respectively. In (47) y reaches Yo as the time x=t/e goes to infinity. In (55) y reaches Yo at

the time xf=2(y o )1/2 which in turn tends to the exact value 1 xf=2 as Yo tends to 1. The

asymptoticity of the LBL law makes it attractive from a practical viewpoint. Moreover, and
this is the single most important point of the present work, the LBL law can handle two-
sided perturbations about Y0, while the NBL law can't. However, as Yo tends to 1 the NBL

14



law tends to the exact feedback control law given in reference 1, while the LBL law breaks
down. The reason for this breakdown is that at this limit the linearized boundary layer

expansion in the (x,a) plane is about the singular arc at infinity, supplying no new
information over that supplied by the reduced solution. This also suggests that the
composite solution obtained using the LBL equations in the (x,a) plane cannot be a
uniformly valid approximation to the exact solution as Yo tends to 1.

The ability of the LBL law to handle two-sided perturbations about Yo is the major

justification for our introduction of the above procedure. Our procedure is nearly-optimal in
the same sense that procedures employing feedback linearization are nearly-optimal, that is,
because we track a nearly-optimal reduced solution that usually dominates the performance
index if the final time is large compared to the characteristic times of the boundary layers.
However, our procedure is not as ad hoc as feedback linearization, and, more importantly,
the LBL law is nonlinear in the state perturbations, suggesting that there might be a hope
of avoiding control saturation problems that are sometimes encountered when using
feedback linearization. Of course, the major setback in our procedure is the fact that it
cannot supply us with a composite solution that uniformly approximates the exact solution.
Thus, the question of combining the classical asymptotic boundary layer theory with
optimal control problems involving active state-variable inequality constraints still remains
unresolved.
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disturbancecausesthesystemto violatetheactivestateconstraint.As analternative,this

paperproposesareformulationof suchproblemsin which theoptimizationis carriedout

with respectto asymptoticcontrollersonly andnot with respectto all controllers. If a

minimumoverall controllersexists,thenthis reformulatedproblemis guaranteedto have

an infimum. An example suggests that the reformulated problem does not achieve its

infmaum, that is, the infimum corresponds to a finite-time controller. By imposing an

additional isoperimetric constraint on the reformulated problem it is shown that one can, at

least for this particular example, select an asymptotic controller that approximates this

infimum.

I. Introduction

State-variable inequality constraints are commonly encountered in the study of

dynamic systems. The study of rigid body aircraft dynamics and control is certainly no

exception. For instance, a maximum allowable value of dynamic pressure is usually

prescribed for aircraft with supersonic capability. This limit is required to ensure that the

vehicle's structural integrity is maintained. Given a typical state-space description of the

vehicle dynamics, this limit constitutes an inequality constraint on the vehicle state. Such

dynamic pressure bounds are commonly encountered during fuel-optimal climb for

supersonic transports 1, for rocket powered launch vehicles such as the U.S. space shuttle 2,

and for single-stage-to-orbit air-breathing launch vehicles 3.

State-variable inequality constraints have been studied extensively by researchers in the

field of optimal control. First-order necessary conditions for optimality when general

functions of the state are constrained have been obtained 4-6. However, the direct

construction of solutions via this set of conditions proves difficult. Moreover, the

controllers derived from such traditional formulations of the problem suffer from serious

practical flaws. They typically tend to track the hypersurface representing a state constraint

boundary in a finite time, which makes the traditional asymptotic boundary layer theory
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non-applicable (see below), and they break down whenever a disturbance causes the

systemtoviolatean activestateconstraint.Accordingly,mostpractitionersseekingan open

loop controlsolutionrelyon directapproachesto optimizationthatemploy penalty

functionsfor satisfactionof state-variableinequalityconstraints.7 As a rulehowever,

algorithmsemploying such methods arccomputationallyintenseand slow to converge.

Consequently,theyarcnotwellsuitedforreal-timeimplementation.

From a SingularPerturbationspointof views.9,in theabsenceof a state-variable

inequalityconstraint(i.e.when no constraintisactive),theinitialboundarylayersolution

fortheclassof systemsbeingconsideredisan infinitetimeprocess.A solutionissought

which asymtoticallyapproachesthereducedsolution.However, when a stateconstraintis

activein thereducedsolution,theboundary layerproblem can bc of finitetime in the

stretched time variable 1°,11.Thus, traditional techniques concerning the asymptotic stability

of the boundary layer system are not applicable, and cannot be used to construct an

approximate boundary layer solution. The presence of an active state-variable inequality

constraint also introduces the possibility of discontinuous costate variables at the juncture

between constrained and unconstrained arcs. A Valentine transformation can be used to

convert the constrained problem to an equivalent unconstrained problem of increased

dimension 12. Smoothness is regained in the process, but at the expense of introducing a

singular arc along the state constraint boundary12,13 and to little or no advantage when

seeking a solution for real-time implementation.

As an alternative, this paper proposes a complete reformulation of optimal control

problems involving active state variable inequality consWaints. Since in practice it is always

the asymptotic controllers that have the most desirable properties, maybe the optimization

of such problems should be carded out not over the class of all controllers, but only over

the class of asymptotic controllers that track a given active state constraint boundary. It is

shown in Section H that a transformation technique can be used to isolate and describe

completely this class of asymptotic controllers. If a minimum over the class of all
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controUers exists, then the reformulated problem is guaranteed to have an inf'anum. Our

results in Section lXI suggest however that this infimum for the reformulated problem

corresponds to a finite-time controUer and is not achieved over the class of all asymptotic

controllers. The situation is somewhat reminiscent of Hoinfinity control theory for linear

systems in which we seek a proper, stabilizing controller to minimize the H-infinity norm

of a closed-loop transfer function. The minimum of this norm over all proper, stabilizing

controllers does not exist. Its infimum however does exist and corresponds to an improper

controller. Thus, just as in H-infinity theory, the question arises naturally in our case as to

how we can find an asymptotic controller that somehow approximates this infimum.

Although there are no general answers yet, a procedure is presented in Section III that does

supply us with an answer at least for a simple example.

II. Construction of arbitrary nonlinear feedback control laws for a

dynamical system that tracks a given hypersurface

Consider the dynamical system:

dx = f(x,y, u)
dt x(t0) = x0 (1)

dy

d-"t-= g(x, y, u) Y(to) = Yo (2)

where x, f are vectors of the same dimension, and y, g and u are scalars. It will be of

interest to describe the set Cof all piecewise continuous (in time) control laws u(x(t),y(t),t)

that track a given hypersurface in the state space of the above system, given by the scalar

equation:

S(x, y) = 0 (3)

that is, if u=u(x,y,t) is a specific control law belonging to C, then the system (1), (2),

driven by u(x,y,t) for t > to (and assuming that S(x0,Y 0) is not zero) will eventually reach
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the hypersurface given in (3) and stay on it thereafter. A control law can drive the system

onto the hypersurface (3) either in f'mite time or asymptotically. Accordingly, the set C is

the union of two disjoint sets F and A. The set F contains all control laws that track

hypersurface (3) in finite time. The set A contains all control laws that track hypersurface

(3) asymptotically. Our purpose in this section is to give a complete description of the sets

Fand A.

We denote by Z the set of all piecewise differentiable, scalar functions of the real

variable a, defined and invertible for all a in [0,1], and satisfying the boundary conditions:

z(O) = 0 ; z(1) = - S(x 0, Y0) (4)

We assume that the range of S is contained in the range of z for all z in Z. We consider a

as a time variable and make the transformation from y to a:

z(a) + S(x, y) = 0 (5)

Differentiating (5) with respect to time and using (1) and (2) results in:

dz da _S _S
da dt + --_-f(x, y, u) + --_-yg(x, y, u) = 0 (6)

We now let dot/& play the role of a new control, 13,by defining:

da
d-t- = 13 (7)

then, (6) becomes:

dz _S f,x, DS
dal3+_-_ - t y,u)+_--g(x,y,u)=O

(8)

We now assume that the hypersurface (3) is first order in u, that is, the total time derivative

of S(x,y) is explicitly dependent on u. We also assume that (5) is invertible in y and that (8)

is inverfible in u, resulting in the two equations:

y = h(x, z) (9)

u = k(x, z,_aa ]3) (10)
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for y and u respectively. System (1) and (2) has now been transformed through (5)-(10) to

the equivalent system:

= f(x,h(x,z(cO),k(x,z(a), 13)) X(to) --x o (11)

d_
=13 a(t o)= 1 (12)

Finite time tracking

Theorem 1 : For any given finite time tf and any function z(a) in Z, there exists a

control law u=u(x,y,0 in Fthat drives system (1), (2) from its initial state at t=to onto the

hypersurface (3) at t=tf and keeps it on the hypersurface thereafter.

Proof: Let tf be a finite time and z(ot) be a function in 7_,We can use z(o0 to obtain the

equivalent transformed system (11), (12). Then, we can use as our control [3 the function:

1

13= tf-t o for t 0<t<tf (13)

13= 0 for t f < t (14)

leading to the time variation for o_:

tf -- t

tf - t o

a=O

for t o < t < tf (15)

for tf < t (16)

Thus, a is driven from 1 to 0, in t0 < t < tf and stays at zero for tf < t. Accordingly,

due to the boundary conditions (4) on the function z(a), our original system (1), (2), is

driven from its initial state at t=t 0 onto the hypersurface (3) in to < t < tf and stays on the

hypersurface for tf < t. The feedback controller u(x,y,t) that will perform this task for

system (1), (2) can be found from (10): [3 is given by (13), (14), z is equal to -S(x,y) from

(5) and since z(a) is invertible on [0,1], dz/da can be expressed as a function of z and

therefore of-S(x,y). The procedure is better illustrated through an example.
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Example 1

Consider the system:

dx u2 X(to) x 0 (17)d-i- =y - =

dy
d-i- = u Y(to) = Yo (18)

and assume that we want to track the line

y-l=0

in a specified final time tf. As our function z(o0 we select:

Yo
z(oO = (1-_-)ln(l+ct)

(19)

(2O)

note that z(0)=0, and

transformation:

z(1)=I-y o as required by (4). From (20) we are led to the

1 -Yo]1_2 ln(l+_) +y- 1=0 (21)

Differentiating (21) with respect to time we obtain:

(11_ Y ° )(1--_ )2 +u=O (22)

resulting in the transformed system:

dx
-di--= 1- (.l_nY°)ln (1

do_

2

Yo
+o0+[(1-21n )(_)] x(t 0) = x 0 (23)

O_(t o) = 1 (24)

If we now use the control [3 given in (13), then, from (22) we obtain:

l-Y° { (1-15Yo) }u= ln2a;-to) exp -In 2 '
(25)
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This open loop control can be shown to drive system (17), (18) from its original state at

t=t o onto the line y=l at t=tf. To obtain a closed loop (feedback) controller we simply

replace Y0 by y and to by t in (25), to obtain:

1-y
u = (26)

In 4 (tf - t)

which again drives the system toward y=l at t=tf.

Theorem 2 : Let u=u(x,y,t) be any control law in ythat drives system (1), (2) from its

initial state at t=t0 onto the hypersurface (3) at t=tf and keeps it on the hypersurface

thereafter. Then, there exists a function z(cz) in Z, such that, when system (1), (2) is

transformed using z(a) to the system given by (11), (12), the control 13for the transformed

system corresponding to u(x,y,t) is given by (13), (14).

Proof: The function z(cz) for 0 < a < 1 is found by solving the system of differential

equations:

dx m

do_ - - (tf - t 0) f(x, y, u(x, y, t))

dz [0S 0S ]d"--_ = - (tf - t 0) _--f(x, y, u(x, y, t)) + -_y g(x, y, u(x, y, t))

(27)

(28)

subject to the boundary conditions:

x(cx = 1) = x 0 ; z(cx = 1) =- S(x 0, Yo) (29)

where y in (27), (28) is a function of x and z through (9) and t in u(x,y,t) is a function of ¢z

through (15), that is,

t= tf - ¢x(tf -t0) (3O)

Note that the function z(o0 found from the solution of (27) through (29) satisfies (5)

for all t > to (a and t are related by (15)). Thus, it also satisfies the boundary condition

z(0)=0, since at t = tf, a and S(x,y) are both equal to zero.

The preceding two theorems tell us that once the control 13for the transformed system

(11), (12) is fixed as in (13), (14), there is a complete correspondence between functions in



9

Z and pieccwise continuous control laws u(x,y,0 in Fthat track hypersurfacc (3) in a finite

time if. That is, for every clement of Z there exists an element of Fand, more importantly,

for every clement of F there exists an clement of Z. The correspondence therefore

established between Fand Z through the selection of _ as in (13), (14) is onto.

Asymptotic tracking

Theorem 3 : For any function z(a) in _ there exists a control law u=u(x,y,t) in A that

drives system (1), (2) from its initial state at t=t o onto the hypersurface (3) asymptotically.

Proof: Let z(a) be a function in 7., We use z(a) to obtain the equivalent transformed

system (11), (12). We use as our control _ the function:

13=_a (31)

leading to the exponential time variation for a:

¢_=e -t (32)

Thus, ot is driven exponentially from 1 to 0. Accordingly, due to the boundary

conditions (4) on the function z(a), our original system (1), (2), is driven asymptotically

from its initial state at t=-t0 onto the hypersurface (3). The feedback controller u(x,y,t) that

will perform this task for system (1), (2) can be found from (10): 13 is given by (31), z is

equal to -S(x,y) from (5) and since z(tx) is invertible on [0,1], dz/da can be expressed as a

function of z and therefore of-S(x,y). Again, we illustrate through an example.

Example 2

Consider again the system:

dy
B-- u
dt

x(t0) = x 0 (33)

Y(t0) = Y0 (34)
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andassumethatwewantto trackasymptoticallytheline
y-l=0

As our function z(tx) we again select:

z(a) = (-l_-Y°)ln (1 + a)

(35)

(36)

satisfying z(O)--O,

transformation:

and z(1)=l-y 0 as required by (4). From

• 2 ln(l+a) +y- 1=0

(36) we are led to the

(37)

Differentiating (37) with respect to time we obtain:

1_ +u=O (38)

resulting in the transformed system:

2

_d__ =ldX __(.1 - YO ]ln (1 + _) + I(1- YO131n _2-) (_)] x(t 0) = x o (39)

a(to) = 1 (40)

If we now use the control 13given in (31), then, from (38) we obtain:

e k(1 - Y) - 1

u= k ek(l_ y )
(41)

where k is def'med as:

k- In 2 (42)
1 - Yo

This open loop control can be shown to drive system (33), (34) from its original state at

t=t 0 asymptotically onto the line y= 1. To obtain a closed loop (feedback) controller we

simply replace Y0 by y in (41), to obtain:
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1 -y (43)
u-

ln4

which again drives the system (33), (34) asymptotically toward y=l. Note that as expected,

in the asymptotic case u does not depend explicitly on t.

Theorem 4 : Let u=u(x,y,t) be any control law that drives system (1), (2) from its

initial state at t=t 0 onto the hypersurface (3) asymptotically. Then, there exists a function

z(a) in _ such that, when system (1), (2) is transformed using z(a) to the system given

by (11), (12), the control 13for the transformed system corresponding to u(x,y,t) is given

by (31).

Proof: The function z(oO for 0 < a < 1 is found by solving the system of differential

equations:

a_- a = -f(x, y, u(x, y, t)) (44)

dz _S _S

a_--_- = _-x f(x, y, u(x, y, t )) + --_- g(x, y, u(x, y, t )) (45)

subject to the boundary conditions:

x(a = 1) = x 0 ; z(a = 1) = - S (x 0, Y0) (46)

where y in (44), (45) is a function of x and z through (9) and t in u(x,y,t) is a function of a

t=ln(1) (47)

through (32), that is,

Note that the function z(a) found from the solution of (44) through (46) satisfies (5)

for all t > to (a and t are related by (32)). Thus, it also satisfies the boundary condition

z(0)=0, since as t approaches infinity a and S(x,y) both tend to zero.

Theorems 3, and 4 tell us that once the control 13for the transformed system (11), (12)

is fixed as in (31), there is a complete correspondence between functions in Z and

piecewise continuous control laws u(x,y,t) in .,_ that track hypersurface (3) asymptotically.
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That is, for everyelementof Z there exists an element of A and, more importantly, for

every element of A there exists an element of Z, The correspondence therefore established

between Aand Z through the selection of [3 as in (31) is onto.

HI. Significance for optimal control problems involving active

state-variable inequality constraints

The ideas presented in the last section can be appropriately utilized in the study of

optimal control problems involving active state-variable inequality constraints. A common

feature of such problems is that when a portion of the optimal trajectory tides the

hypersurface representing a state constraint boundary, the optimal transition to this

hypersurface from an initial point that does not lie on it occurs in finite time. Consequently,

the corresponding optimal feedback controllers for such problems, that can be obtained by

well-known analytical or numerical methods, suffer from two flaws that tend to eliminate

almost completely their practical usefulness. First, such feedback controllers are finite-time,

meaning that, the traditional asymptotic boundary layer theory is not applicable. Second, if

a disturbance throws the system instantaneously toward the prohibited side of the

hypersurface, the feedback scheme breaks down and there is no "optimal" way of returning

to the hypersurface 10.

Asymptotic controllers on the other hand, capable of tracking from both sides a

hypersurface representing a state constraint boundary, presumably won't suffer from either

of the above two flaws. This observation, and the ideas presented in the last section

suggest that once we know that a portion of the optimal trajectory for a problem rides such

a hypersurface, we can change our point of view and try to optimize the system over all

asymptotic controllers capable of tracking that hypersurface from both sides.

Consider therefore that we are to minimize the performance index:
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j =  [x(t f), y(tf)] + IL(X, y, u)dt
to

(48)

subject to the dynamical equations,

dx
= f(x, y, u) (49)

dy
d"t-= g(x, y, u) (50)

the boundary conditions,

x(t0)= x0; Y(t0)=Y0 ; to fixed ; tf free (51)

and the state variable inequality constraint:

S(x, y) <0 (52)

As in the last section, x, f are vectors of the same dimension, and L, S, y, g and u are

scalars. We will assume that

S(x0, Y0) <0 (53)

and that the optimal trajectory reaches the hypersurface

S(x, y) =0 (54)

at a finite time t= h and stays on it for t > q. Thus, in order to avoid the problems with the

finite-time controllers mentioned above we would now like to optimize J over the class of

all asymptotic controllers, which we have already denoted by A, capable of tracking

hypersurface (54) from both sides. In order to formulate this problem we first use an

arbitrary function z(o0 from the set of functions Z defined in the last section to transform

our problem as follows:

Our transformation reads:

z(ct) + S(x, y) = 0 (55)

with the function z(ct) subject to the boundary conditions:
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z(O) =0 ; z(1) =-S(x o, Yo) (56)

This leads as in the last section (see equations (5) through (12)) to:

dz _S os
d'-"a [3+ ox f(x, y, u) + _"gt'x, y, u) = 0

I

and to the transformed system:

(57)

y = h(x, z) (58)

u= k(x,z,_ _) (59)

dx
=fix,h(x,z(a)),k(x,z(a)_ 13))dt

x(t0) = x 0 (60)

d_
dt - _ a(t°) = 1 (61)

The performance index to be minimized assumes the form:

J= _[x(tf),h(x(tf), z(a(tf)))]+ _L x, h(x,z), k(x, z, _--_) dt
(62)

As we saw in the last section (Theorems 3 and 4), once the control [3 for the

transformed system (60), (61) is fixed at 13=-a, there is a complete correspondence

between functions z(a) in Z and piecewise continuous control laws u(x,y,t) in A that track

hypersurface (3) asymptotically. That is, for every element of Z there exists an element of

A and, more importantly, for every element of A there exists an element of _ To fred the

"best" asymptotic controller therefore it is natural to fix the control 13at

13=-a (63)

and then try to determine the "best" function z(a) in Z that minimizes J. This leads direcdy

to the off-line optimization problem: Minimize

1 1
J1 = q)[x(O), h(x(O), 0)] + [(-_)L(x, h(x, z), k(x, z,- av))da (64)

0
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subject to:

dot
x(1) = x o (65)

clz
-- = v z(0) = 0 ;
do_ z(1) =- S(x o, Yo) (66)

We can seefrom (64)thatforeveryfunctionz(oc)inZ therecorrespondsa number Jl(Z).

Thus, wc can dcfmc thesetofrealnumbers:

./= { Jl(z) : z is in Z} (67)

and state our off-line optimization problem (64) through (66) by asking for the minimum of

J. Although we do not know at the present if and when such a minimum exists, we can

state the following theorem that provides us with an important partial answer:

Theorem 5 : If the original problem (48)-(52) involving an active state variable

inequality constraint has a minimum, then the off-line optimization problem (64)-(66) has

an infimum.

Proof : Assume that problem (48)-(52) has a minimum, which we denote by Jmin'

This immediately implies that the set ._ is bounded below by Jmin,that is, Jmin < Jl(z) for

all z in Z. Since any set of real numbers that is bounded below has an infimum, .¢has an

infimum.

Example 3

To illustrate theaboveideawe willapplyittothefollowingproblem:Minimize
0O

J= l(1-y +u 2) dt
0

subject to:

dy
=u ; y(0) =0

(68)

(69)
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y-l<O

The solution to this problem for 0 < t < 2 can be shown to be10:

t 2 t
y =--_- + t ; u=-_-+ 1

(70)

(71)

leading m the finite-time controller:

u = (1 - y)l/2 (72)

I

Although this controller is optimal, it is clearly useless from a practical point of view since

it breaks down when y exceeds 1. It cannot be used to track the line y=l in the presence of

two-sided perturbations about y=l. At t = 2 y reaches the value y = 1. For t > 2, y and u

stay constant at 1 and 0 respectively and there is no more contribution to the performance

index J. In order m optimize J over all asymptotic controllers that track y = 1, we now

make the transformation:

z(oO +y- I= 0

z(O)=O ; z(1)=1

(73)

(74)

which leads to:

dz
d'--_ 13+ u=O (75)

and to the transformed optimization problem: Minimize

subject to:

(76)

Using now the control:

13=-a (78)

leads to the off-line optimization problem for the function z(oO: Minimize

do_
dt - 13 a (0) = 1 (77)
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J1 "-_- + O_v 2 d(_ (79)

subject to:

dz
= v z(O)= 0 •

dtx
z(t)= 1 (80)

The Hamiltonian associated with this problem is:

Z V2H= _" +ix +Xv (81)

which results in the optimality condition for v:

v--- 2---_ (82)

and in the adjoint equation for X:

d_. 1
Td=__ (83)

The solution for X is:

_,=ln A (84)

where A is an integration constant. Combining (82) and (84) with (80) we obtain the

differential equation for z:

do_

which has the general solution:

,IA;z = _-(In _ + B (86)

B being a second integration constant. A quick inspection now reveals that there are no

values of A, B, for which the function z(a) in (86) can satisfy both of the boundary

conditions z(0)--0, z(1)=1. The off-line optimization problem therefore posed in (79), (80)

has no minimum. As guaranteed however by Theorem 5, it does have an infimum, since it
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is bounded below by Jmin, where, Jmin is the minimum value of the performance index in

(68), that is,

t2-t)dt =4Jmin = 2 _(1 + "_" (87)
0

In order to see what kind of controller u the function z(o0 found in (86) implies, we use

(75), (78), and (85) to find:

u = -l(t + lnlAI) (88)
Z.,

Comparing with (71), we see that (88) implies the optimal, finite-time controller found

before. Indeed, (88) can be shown to lead to (71) if the boundary conditions y(0)--0 and

y(2)=l are imposed and the equation dy/dt=u is integrated. There is no contradiction

however with either Theorem 3 or Theorem 4, since there is no function z in Z

corresponding to the finite-time controller u given in (88).

The above result implies that the minimum value of J, Jmin---4/3, found in (87) is not

only a lower bound of J1 but the actual infimum itself. This situation is reminiscent of H-

infinity control theory in which we seek a proper, stabilizing controller to minimize the H-

infinity norm of a closed-loop transfer function. The minimum of this norm over all proper,

stabilizing controllers does not exist. Its infmaum however does exist and corresponds to an

improper controller. Thus, just as in H-infinity, the question arises naturally in our case as

to how we can find an asymptotic controller that somehow approximates this infimum.

Although there are no general answers yet, we will present a procedure that does supply us

with an answer at least for the above example:

First we can show using (85) that for the off-line optimization problem (79), (80), the

integral

1 .f "_IAI1 1 2

Sv 2 do_= J[-_-Jln 2[--ffldt_ (89)
0 0
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representing the "total energy" stored in the signal v(a) diverges. This suggests that if we

impose the isoperimetric constraint

1

Sv 2 da = k (90)
0

on the off-line optimization problem (79), (80), where k is a given, finite, strictly positive

number, we may have a hope of finding a function z(a) in _ that is, one that does satisfy

the boundary conditions z(0)--0 and z(1)=l. The Hamiltonian associated with this new

problem (79), (80), and (90) will read:

z v2H = _- + (tt + a) + _.v (91 )

where I.t is a constant Lagrange multiplier. For each value of k there corresponds a specific

value of }.tand vice versa. The corresponding optimality condition for v now becomes:

v = (92)
2 (!1 + a)

The adjoint equation for k remains unchanged as in (83) and leads to the same solution for

X given in (84), while the differential equation for z now reads:

da- 2(g+a) In
(93)

(93) leads to the solution:

1 1
z(a) =- -_- I,_ In dE (94)

satisfying the boundary condition z(0)=0. The boundary condition z(l)=l is satisfied by

the choice of A (as a function of tt) that guarantees that:

finally, the particular value of _t is evaluated from (90) once a value for k has been

specified. That the improper integrals on the right-hand-sides of (94), (95) exist will be
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argued upon more rigorously in the final paper. Here we will supply a small indication to

convince the reader that this is indeed so: Consider the value of k corresponding to the

value _t=l. Then, the integral on the right-hand-side of (95) can be evaluated easily from

any Table of Definite Integrals 14, and (95) can be solved for A to yield:

lnlA l_ (24 +_2) (96)
121n2

The corresponding asymptotic controller u can be found from (75), (77), (78), (93), (96)

and the fact that we set I.t=l. The result is:

• e -t (24+g 2 )u= 2(1+ e_t) _i_ _ t (97)

It can be shown that this controller drives y asymptotically from y=0 at t=0 to y=l as t

approaches infinity. This fact however is already guaranteed by Theorem 3. To construct

an asymptotic feedback controller, one will have to use (97) to integrate the equation

dy/dt=u. This will lead to an expression for y as a function of t. Elimination of t between

this expression and (97) will lead to the desired asymptotic feedback controller. Or,

alternatively, one can use the transformation (73) with z(t_) supplied by (94) and express o_

as a function of y. Then, using (93) and (75) with I]=-a should result in the same

asymptotic feedback controller as before. Although the procedure cannot be carried out

analytically for either case, it can be carded out numerically and relevant results and details

will be given in the final paper.

IV. Conclusions

The class of all piecewise continuous (in time) controllers that track a given

hypersurface in the state space of a dynamical system can be split into two disjoint classes.

The first class contains all controllers that track the hypersurface in finite time. The second

class contains all controllers that track the hypersurface asymptotically. A transformation
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techniquecanbeusedto give a complete description of both classes. This splitting of the

two classes can be used to reformulate optimal control problems involving active state

variable inequality constraints. The optimization in the reformulated problem is carried out

over the class of asymptotic controllers only and not over the class of all controllers. If a

minimum over all controllers exist, then the reformulated problem is guaranteed to have an

infimum. An example suggests that the reformulated problem does not achieve its infLmum,

that is, the infimum corresponds to a finite-time controller. By imposing an additional

isoperimetric constraint on the reformulated problem one can, at least for this particular

example, select an asymptotic controller that approximates this infimum.
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